An interactive surrogate-based method for computationally expensive multiobjective optimisation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling

We present a parallel evolutionary optimization algorithm that leverages surrogate models for solving computationally expensive design problems with general constraints, on a limited computational budget. The essential backbone of our framework is an evolutionary algorithm coupled with a feasible sequential quadratic programming solver in the spirit of Lamarckian learning.We employ a trust-regi...

متن کامل

SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems

This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sort...

متن کامل

A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems

Integrating data-driven surrogate models and simulation models of di erent accuracies (or delities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple delities in global optimization is a major challenge. To address it, the two major contrib...

متن کامل

Agent-based Evolutionary Multiobjective Optimisation

This work presents a new evolutionary approach to searching for a global solution (in the Pareto sense) to multiobjective optimisation problem. Novelty of the method proposed consists in the application of an evolutionary multi-agent system (EMAS) instead of classical evolutionary algorithms. Decentralisation of the evolution process in EMAS allows for intensive exploration of the search space,...

متن کامل

Demonstrating the Applicability of PAINT to Computationally Expensive Real-life Multiobjective Optimization

We demonstrate the applicability of a new PAINT method to speed up iterations of interactive methods in multiobjective optimization. As our test case, we solve a computationally expensive non-linear, five-objective problem of designing and operating a wastewater treatment plant. The PAINT method interpolates between a given set of Pareto optimal outcomes and constructs a computationally inexpen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Operational Research Society

سال: 2018

ISSN: 0160-5682,1476-9360

DOI: 10.1080/01605682.2018.1468860